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THE CONVERGENCE 
OF THE CASCADIC CONJUGATE-GRADIENT METHOD 

APPLIED TO ELLIPTIC PROBLEMS 
IN DOMAINS WITH RE-ENTRANT CORNERS 

VLADIMIR SHAIDUROV AND LUTZ TOBISKA 

ABSTRACT. We study the convergence properties of the cascadic conjugate- 
gradient method (CCG-method), which can be considered as a multilevel 
method without coarse-grid correction. Nevertheless, the CCG-method con- 
verges with a rate that is independent of the number of unknowns and the 
number of grid levels. We prove this property for two-dimensional elliptic 
second-order Dirichlet problems in a polygonal domain with an interior angle 
greater than ir. For piecewise linear finite elements we construct special nested 
triangulations that satisfy the conditions of a "triangulation of type (h, -y, L)" 
in the sense of I. Babuska, R. B. Kellogg and J. Pitkairanta. In this way we can 
guarantee both the same order of accuracy in the energy norm of the discrete 
solution and the same convergence rate of the CCG-method as in the case of 
quasiuniform triangulations of a convex polygonal domain. 

1. INTRODUCTION 

In this paper, we consider a cascadic conjugate-gradient method (CCG-method) 
for solving discretized elliptic equations that yield discrete symmetric positive def- 
inite problems. This algorithm can be considered as a multigrid or multilevel 
method, but without coarse grid correction, i.e., if a certain grid level is attained, 
we do not return to coarser grid levels but proceed only at the same or on higher 
grid levels. The CCG-method can be recursively defined as follows. On the coars- 
est grid, the linear system is solved directly. On finer grids, the system is solved 
iteratively by the conjugate-gradient method. These iterations are started by an 
interpolation of the approximate solution from the previous coarser grid. On each 
fixed grid level we do not use any preconditioning based on coarser grids nor any re- 
strictions onto coarser grid levels. Nevertheless, the CCG-algorithm as a multilevel 
method has optimal arithmetic complexity, and its convergence rate is independent 
of the number of unknowns and of the number of grid levels. 

A CCG-algorithm has been recently presented by P. Deuflhard in [4] and [5], 
where the excellent convergence properties of this algorithm were demonstrated by 
numerical test examples. Its optimal arithmetic complexity with respect to the 
number of unknowns was proved for H2-regular elliptic problems in [12]. Then for 
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quasiuniform meshes this result was extended in [11] and [2] to elliptic problems 
with reduced regularity caused by interior angles greater than iv. Nevertheless, the 
use of piecewise linear finite elements on quasiuniform triangulations reduces the 
convergence order of the Galerkin solution. Furthermore, F.A. Bornemann [2] stud- 
ied the replacement of the CG-method by other iterative methods (damped Jacobi, 
GauB3-Seidel, SSOR, etc.) and gave sufficient conditions for optimal complexity of 
the cascadic algorithm. In the three-dimensional case these conditions are satisfied 
by many known iterative schemes, but in two dimensions the amount of work is 
suboptimal unless the CG-method is used. 

Here we use piecewise linear finite elements on triangles in order to discretize a 
second-order elliptic problem in a polygonal domain with an interior angle greater 
than ir. We construct special nested triangulations that are refined towards this an- 
gular point as in [13] and satisfy the conditions of a "triangulation of type (h, -y, L)"; 
these were defined in [1] and used for the classical multigrid method in [14]. We 
prove in detail that one obtains the same order of accuracy of the approximate 
solution and the same convergence rate of the CCG-method in the energy norm as 
in the H2-regular case. 

2. THE CASCADIC ALGORITHM 

We denote by MO, M1,... , Ml finite-dimensional vector spaces of increasing di- 
mension equipped with inner products (., .)i, for i = 0, 1, , 1. Moreover, let linear 
prolongation operators 

(2.1) Ii: Mi - Mi+1, for i = 0,1,** ,1-1, 

and linear invertible operators 

(2.2) Li: Mi -Mi, for i=0,... ,I1, 

be given. Then the cascadic algorithm is an iterative method for solving the fol- 
lowing problem: 

For a given fi E Ml, find ul E Ml such that 

(2.3) Liui = fi, 

by using approximations of the solutions of the following problems: 

For a given fi E Mi, find ui E Mi such that 

(2.4) Liui = fi 

on lower levels i = 0,... , 1 - 1. The idea is to start with the exact solution 

Vo = Uo 

on the lowest level i = 0 and to prolong each approximate solution 

Vi EMi 

of (2.4) to the next higher level in order to find an initial guess for an iterative 
method that approximates the solution ui+,. Applying the conjugate-gradient al- 
gorithm (CG-algoritm) on each level, we obtain the cascadic conjugate-gradient 
algorithm (CCG-algorithm), which can be formulated in the following way: 
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CCG-algorithm 

{1. Set vo = L-fo. 

2. For i = 1,2, *.,I and given vi-1 do: 

{ 2.1. Set wi = j i-1vi-1; 
2.2. Perform mi iterations of the conjugate-gradient method: 

Yo = Wi; 

pO = rO Li fi yo; 

go = (ro,ro)i; 

fork=1,2,- ,mi do: 

{ Ck-I Uk-l/(Pk-1,LiPk-1); 

Yk = Yk-1 + ak-lPk-1; 
rk =rkI - OakLiPk1; 

Uk = (rk,rk)i; 

if Uk 0 then { ymi = Yk ;goto 2.3 }; 

Ak = gk/(k-1; 

Pk = rk + fkPk-1; 

} the end of the iteration; 

2.3. Set vi Ym,; 

} the end of the level i; 
} the end of the algorithm. 

We shall study the convergence properties of the CCG-algorithm under the as- 
sumption that the operators Li, for i = 0,1,- , 1, are self-adjoint and positive 
definite, i.e., for i 0, 1, . , 1 we have 

(2.5) (Liu,v)i = (u,Liv)i, (Liu,u)i > ai(u,u)i, aj > 0, Vu,v E Mi 

Moreover, we assume that the operator Li-, Mi-, - Mi-, on the lower level can 
be represented by means of the operator Li Mi - Mi and the transfer operators 
Ii-l: Mi-, * Mi, I>*I: Mi - Mi-, in the form 

(2.6) Li-, = 1 I* 1LiIi_1 

Note that the adjoint operator I>*_I: Mi -* Mi1, for i = 1, 2, ,1, is defined by 

(It*_ 1v7W)i-1 = (v7 Ii-iw)i Vv E Mi, W E Mi-, 

We introduce a scale of norms on Mi by 

Illuilil(a':= 7/ uE Mi, 

with a E (-oo, oo). In order to simplify the notation, we write 

Illullli := Illullli(l), Ilulli := IllullIM?, u EE Mi. 

The operator norm induced by .II for an operator B : Mi - Mi is given by 

(2.7) sup IBu lKi 
uC-Mi\{0} HluHli 
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On a fixed level i E {1, ,l} we apply the CG-algorithm to reduce the error 
ui- wi of the initial guess wi for the exact solution ui of problem (2.4). After mi 
steps we get the error 

Ui- vi:=Bi(ui - wi) 

of the final approximation vi on level i. In this way we define the operator Bi 
Mi - Mi of error reduction on level i. This operator can be represented as a 
polynomial in Li: 

Mi 

(2.8) Bi = Pi(Li) = I + E akL., 
k=1 

with coefficients which depend on the parameters 0o,.*. , 7 umi, 0,.0. , ?lmi_l given 
in the definition of the CCG algorithm (see [10]). Here and in the following we 
denote by I the identity in the corresponding space. From [10] we recall the well- 
known optimality property of the CG-algorithm: 

Lemma 2.1. Among all polynomials of the form (2.8) with arbitrary coefficients ak 

the conjugate-gradient method minimizes the error ui - vi of the final approximation 
vi in the norm H Ii for a fixed given initial guess wi. 

3. OPTIMAL POLYNOMIALS 

For estimating the norm of the error-reduction operator Bi on the level i, we 
consider polynomials qm of degree m with qm (0) = 1. These polynomials can be 
written in the form 

m 

(3.1) qm(X) f (I - IkX), 

i h~~~~~~~~=1 
with parameters ilk 74 0 for k = 1, ... , m. Note that the polynomial Pi that defines 
the error-reduction operator B- on the level i has the same structure. We shall 
show that on a given compact set [0, d] the parameters ilk, for k = 1,... , m, can 
be chosen in such a way that the resulting polynomial satisfies certain optimality 
properties. 

Lemma 3.1. For any -y > 0 and any d > 0, there exist parameters ilk, for k - 

1,... , m, such that the polynomial defined by (3.1) satisfies 

(3.2) max Iqm(x)l < 1 
0<x<d 

and 

(3.3) max Ix-/2qm(x)I <? y(m)d&/2, 0<x<d 

where (i(m) is independent of d and tends to 0 if m tends to infinity. 

Proof. We consider the minimization problem 
Find parameters 1it, ** , pm such that 

(3.4) M(/it,... , m) max I \qm(x) 
b<x<d 

becomes mi'nimal. 
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In [13, ?4.1], it has been proved that the solution of this problem defines the 
polynomial qm with 

(3.5) afqmm(x) =(-1)mpmcos((2m+ 1)arccos x/d), Pm =v/(2m+ 1). 

One can check that q-m is a polynomial in x of degree m with zeros at xk and whose 
parameters ilk are given by 

(3.6) 
I 

- - = 2cos ,(2 1)_ for k = 0, , m-1. 
Xk d 2(2m +1) 

In [13, ?4.1] it has also been proved that 

(3.7) 1qm(x) < 1 Vx E [O,d]. 

It follows directly from (3.5) that 

(3.8) flq Am (x) ?< Pm Vx E [O0 d]. 
Now let us first consider the case -y E (0,1]. Using (3.7) and (3.8), we get 

x/2 qm (x) ? < Va qm (x) l < d/2 /(2m + 1) Y Vx E [0, d]. 

Thus we have shown that there are parameters 11k in (3.1) such that the estimates 
(3.2) and (3.3) hold with rq(m) defined by 

1 
(3.9) 77a(m) = (2?) for -y E (0,1]. 

Next we consider the case -y > 1 and put 
f ny if -y is an integer, 

r1 [] ] + 1 otherwise. 

Any integer m can be decomposed in the form 

m =tr + s, 

where t = [m/r] and 0 < s <'r - 1. Then the polynomial 

(3.10) qm (x) (x) (x) 

is of the form (3.1), with t parameters 

1 -2w7(2i?+1) (3.11) Hi= d cos 222 ) for i = 0, .. * ,t- 1, 
d 2(2t?+1) 

of multiplicity r - s and t + 1 parameters 
1 2ir(2j +1) 

(3.12) H= dcos 2 (2t+), for j0,... ,t, 

of multiplicity s. Applying (3.7) to qt and qt+l, we get 

(3.13) qm (x) qt(x)r-s +1 1 Vx E [Od]. 

In order to show (3.3) we use (3.8) for qt and qt+l, and obtain 

ix7rqt(x)l < Y/rjI Vx e [0, d] 

and 

N 
_y/r 
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Consequently, 

(3.14) <dVx qm (x)l < x/2rq (x) r-s / ? &'/2j(m) Ve [0, d], 

where 

(3.15) 717(m) (2t + I)y(r-s)/r(2t + 3)ys/r Vx [0,]. 

Note that the function qa (.) is monotonically decreasing with respect to m = tr + s. 
Moreover, if s = 0 (i.e., if m is a multiple of r) we have 

1 
(3.16) rm() +1) O(m-'). 

Therefore rqum) tends to 0 when m -* oo. Thus, setting ilk in (3.1) equal to the 
values in (3.11) and (3.12) with their corresponding multiplicities, we get (3.3) for 
the case -y > I also. E 

We set d = A*, where A* denotes the largest eigenvalue of the operator Li in the 
space Mi, and choose the parameters 11k as in the proof of Lemma 3.1. Then the 
optimal polynomial qm defines the auxiliary operator Si,m by 

m 

Si,m = qm (Li) = J (I - PkLi), 
k=1 

which majorizes the error-reduction operator Bi on level i owing to Lemma 2.1. 

Lemma 3.2. Let the operator Li be self-adjoint and positive definite. Then for 
any y > 0, we have the inequalities 

(3.17) jjjSi,mwjjji < (Ai* )/2r,(,m)|||W|||(1 7) VW EM 

and 

(3.18) |||Si,mW|||i < lllwllli Vw E Mi, 

where the function q_7 is independent of d and tends to 0 if m tends to infinity. 

Proof. We can assume that the set of eigenvectors {fjlni I of the eigenvalue prob- 
lem 

(3.19) Li p = Ajpj, for j n1, - ,ni, where ni = dimMi, 

is orthonormal with respect to the inner product (., )i, i.e., 

((Pj, (P) i = 6j k, for j, k = 1, ... ., ni, 

where 8jk is Kronecker's symbol. Then, using the basis representation 
ni 

(3.20) w E ajf 
j=1 

of w E Mi, we get 

(3.21) (1y)2 

j=1 

and 
ni 

(3.22) | AjSi,mW I l Aq(A j- 

j=1 
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From (3.3) we obtain 

ni ni 

2~ ~~~EAq iQ (Aj)al2 < 72 (mr) (A*)-7 Al-7 C2 
(3.23) j=1 j=1 

= q 7 (T) (Ai*) I(I jjWjj(1--Y))27 

which implies (3.17). Using (3.2), we get immediately 

ni ni 

E Ajq2(Aj) C2 < E Aj >z2 = Il W1112 
j=1 j=1 

which implies (3.18). E 

4. THE ALGEBRAIC CONVERGENCE THEOREM 

In order to formulate our abstract convergence result, we assume that the fol- 
lowing criterion is satisfied: 

There exist constants c* > 0 and -y > 0 such that for i = 1, , 1 we have the 
following relation between two neighbouring solutions ui-1 and ui of the problems 
(2.4): 

(4.1) illui-Ii-jui-1111( ) < c*(Ai*)-/2 u - 

Note that this inequality can be proved not only in the case of Hl+A-regularity 
with A c (0, 1], but also for A > 1 when for example second-order finite elements 
are used. 

Theorem 4.1. Let the operators Li, for i =0,... , 1, be self-adjoint, positive defi- 
nite and satisfy 

Li-, I=t* Lii_j. 

We assume that the convergence criterion (4.1) holds for some -y > 0. Then, for 
each level i, where i 1,. ... , 1, the approximate soluttion vi of the CCG-algorithm 
satisfies the inequality 

(4.2) illui - villi < c* Zq7y(mj) |ujj - Iyluj- llllj 
j=1 

where the constant c* and the function q_7 are independent of i and uj for j 
1, ... ,i. 

Proof. Let us denote the iteration error of the CCG-algorithm at level i after mr 
steps by 

Ei =Ui-Vi Vi =O,1, 
.. 

71. 

Using the definition of the error-reduction operator Bi, we have 

i =Bi(ui - wi) 
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where wi is the initial guess for the CG-algorithm on level i. The polynomial qm( ) 
that defines Si,mi (.) has the form (2.8) with some coefficients altered. The mini- 
mization property of the CG-algorithm (Lemma 2.1) implies that 

IIEliIIIi =IllBi(ui -Wi)|||i 

(4.3) ~~< I I Si,mi (ui - wi) III 

_< ll}isi'Tti(ui -Ii-lui-0)]lIi + |l1si'miIi-lEi-IIIIi. 

Taking into consideration (3.17) and (4.1), we can estimate the first term in the 
right-hand side of (4.3): 

S m, (ui --Ii-jui-1) Ili < (Ai* ),/2,q_y(T ) I I IU,_ ,_U _ I I 1|(1 7) 

(4.4) ? c1rI (mi) wj 
< c -y (Tni) I I ui - i-jui-I I IIi. 

To estimate the second term, we use (3.18): 

IIISiMji-IEi_IIIIli <_ |llSi-IEi-IIIIi, 

and by (2.6) we have 

IIIj_1IE_IIII l2 = 1j ( I* LiIi_IEi_I Ei_I)i_I 
6i 

= (Li- IEi_-1 

II Il i-lI2_l 

Thus we obtain 

(4.5) ?IEiIIIi < cr/)(jrni) I|lui- i- ui-illli + I||Ej-111ji-1, 

from which the statement of the theorem follows by induction on i. E 

Remark 4.2. Each term in the sum (4.2), 

2m + lIlu-_u_ll, 

can be considered as the error contribution at the corresponding level j of the 
CCG-algorithm. Since c* is independent of j and mj, we can reduce this error 
contribution by taking a suffiently large number of smoothing steps mj. Later we 
shall see that asymptotically the size of the term I IIuj-Ij-Iuj-II j also decreases 
as the level j increases. This is important, since the complexity of the CG-iteration 
increases with j. 

5. THE BOUNDARY VALUE PROBLEM 

Let us consider the following Dirichlet problem in an open bounded polygon 
Q C R2 with boundary F = Q 

2 

(5.1) -E oi (aijju) + bu - f in Q, 
i,j=1 

(5.2) u = O on F, 

where the coefficients and the right-hand side of (5.1) satisfy the conditions 

[0kaij E Lq(Q), q>2, i,j,k=1,2; a12 = a21 on Q; 
(5.3) b E L2(Q); b > O on Q; there are v2> v1 > O such that 

VI 1 < E2 aij 2 V(i E R on Q. 
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We shall use the standard notation of Sobolev spaces Hs (Q) equipped with the 
norm 11 I 1 Q for any integer s > 0. The space H?(Q) coincides with the space 
L2(Q), and Ho,(Q) is the subspace of H1(Q) that is the closure of the set COOO(Q) 
of infinite differentiable functions with compact support in Q. With this notation 
the problem (5.1)-(5.2) can be formulated in its weak form: 

Find u E HO(Q) such that 

(5.4) a(u,v) (f,v)Q Vv E Ho'(Q), 

where the bilinear form a(., ) and the linear form (f,.) are given by 

2 

(5.5) a(u, v) E aij oju 9iv + buv) dx, (f, v)Q fv dx. 
i,j=l 

It is known that under the assumptions (5.3) the problem (5.4), (5.5) has a unique 
solution [8]. Under the assumptions that f belongs to L2(Q) and that Q is convex 
the solution is H2-regular. This regular case has been studied in detail in [12]. Here 
we are interested in the more general case of a non-convex polygon. To simplify the 
presentation we consider only the case of one re-entrant corner with inner angle 
0 > ir at the origin (0, 0). 

In order to describe the type of regularity loss, let us take a positive ro in such 
a way that the circumference of the circle with center (0, 0) and radius ro cuts 
only a sector w from the domain Q. Then we introduce polar coordinates (r, p), 
where xl r cos p and x2= r sin p, such that sector w is described by 0 < r < ro 
and 0 < p < 0. The singular behaviour of the solution in these coordinates is 
characterized by the following function: 

(5.6) wv(3r, ) = r(r)sin w/O, 

where the constant ,u E (1/2, 1) can be given in explicit form [9, 6]; for example 
in the case of Poisson's equation we have ,u = wr/O. The cutoff function ~(r) E 
C? [O, oo) is given by 

I if r e [0,ro/2], 
(5.7) (r) monotone if r E [ro/2,ro], 

O if 'r c [ro,oo). 

Using the singular function (5.6), we can represent the solution of (5.1)-(5.2) in 
the form 

(5.8) u(x) = v(x) + cw(x), 

where w(xI,x2) = w(rcos<,rsinp) = w(r,p), and a and v denote a constant and 
the regular part of the solution, respectively, that satisfy 

(5.9) 1U1 + IIVfl2,Q < c flf 1o0,Q 

The regularity properties of the solution u can also be described by special spaces 
with weighted norms [1]. For this purpose, we introduce the weighting function 

(5.10) 4q>(xI, x2) = 4q>(r cos , r sin ) = q4g(r, ) = rd for ,B E (-oo, oo) 
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and denote by Hm'/ (Q), for m > 0 and 0 <? < 1, the closure of C??(Q) in the 
norm m, defined by 

HIufl23 = lUI12 1 + j 
4 E (&a{ aM2u)2 dx, 

M l+m2=m 

m > 1, m1 > 0, m2 > 0, 

HUH12= j4D2 U2 dx. 

Then we have the following regularity result [7, Theorem 1.1]: 

Theorem 5.1. Suppose that 1 - ,u <3 < 1 and 

(5.11) f E HOeO(Q). 

Then the solution u of (5.4) belongs to H2)3(Q), and there is a constant cl > 0, 
which is independent of f, such that 

(5.12) JU12,3 <? c1l lf o,, 

Remark 5.2. Note that L2(Q) c H0"3(Q) for /3> 0. Therefore the condition 

(5.13) f E L2(Q) 

is sufficient for (5.11), and a positive constant c2 exists such that 

(5.14) llf 10,3 < C211f 10. 

6. THE MESH REFINEMENT STRATEGY 

Standard finite element triangulations result in optimal convergence rates, pro- 
vided that the solution is sufficiently regular. A reduction of the convergence rate 
can be observed both theoretically and numerically when the solution is not H2- 
regular. Consequently special mesh refinement strategies have been developed to 
guarantee optimal convergence rates [9, 1, 14]. Standard techniques for adapting 
the grid in the neighbourhood of singular points lead to a family of meshes with op- 
timal order of convergence, but not necessarily to a family of nested finite element 
spaces (see, e.g., [9]). In this section we derive a special mesh refinement technique 
which guarantees both optimal order of convergence and a nested family of finite 
element spaces. 

We shall follow a technique described in [13]. Let us start with an initial ad- 
missible triangulation F0 of Q into closed triangles, i.e., each pair of triangles has 
either no common points or a common vertex or a common edge. In order to de- 
fine the refinement near the singular point A = (0, 0), we introduce the refinement 
index p > 1. Then every initial triangle is divided into 4 finer ones. If a triangle 
of refinement level i, where i = 0,1, * , 1 - 1, does not contain the origin (0, 0), it 
is subdivided into 4 triangles by connecting the midpoints of its edges. This type 
of refinement is called a regular partition of the domain. Now let AABiCi be a 
triangle of refinement level i and have a vertex A = (0, 0) (see Figure 1). We denote 
by bo the length of the perpendicular from A to the opposite side BoCo of the initial 
triangle AABoCo. Then we construct the straight segment Bi+1Ci+l parallel to 
BoCo at a distance bo2-(i?+)P from A, with ends Bi+,, Ci+1 on the edges ABO, 
ACo respectively. The midpoint of BiCi is denoted by Ai+,. Connecting the points 
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Co 

i-lI 

Bi+? Bi Bi-1 Bo xl 

FIGURE 1. Irregular partition of triangle. 

Ai+, Bi+1, Ci+1, we get 4 finer triangles of the triangulation Tj+1 at refinement 

level (i + 1). This type of refinement is called an irregular partition. 

Thus, starting with the initial admissible triangulation F0 of Q, we end up with 

a family of admissible triangulations Fi for any i, where i = 1, 2,... . Before we 

show that F is a triangulation of the type considered in [1], we note an important 

property of the locally refined meshes constructed above. If we define the maximal 

length of all edges of the triangulation Fi by hi, then the relation 

(6.1) hi = h,2 i+' 

holds true for i 1, 2,.. This can be seen in the following way. On the triangu- 
lation Fi, for i 0,1,-* , all edges of triangles sharing A as a vertex have length 

less than or equal to hi. Now let us consider the next triangulation Fi+1. Since 

the distance from each parallel line BiCi to A is bo2-(i?+)P, for i = 0,1, , we can 

show by an elementary argument that 

I+cil ? ACiK11/2, ICiA iAi-/2. 

jBi+jAij < IBiAi-11/2) jBi+jBij < iBiBi_1112. 

Therefore we have 

hi+, = hi/2. 

Thus by induction we get (6.1). To classify the properties of the triangulation we 

shall ufse the definition given in [1]: 

A triangulation F is said to be of type (h, -y, L) if it satisfies the following three 

properties: 

(i): for any triangle A E F and for any angle a of A, we have 

(6.2) a> L-1; 

(ii): if 4 b4 0 on A, then 

(6.3) L-14b(x) < dA/h < LD_(x), 

where dA = sup{ x - yl: x, y E A} is the diameter of A; 

(iii): if I = 0 at some point of A, then 

(6.4) L-1 sup C?x) < dA/h < L sup Cjx). 
xCA xCA 

Lemma 6.1. Let p be the refinement index and ay (p - 1)/p. Then each trian- 
gulation .Fi is of type (hi, -y, L) with a constant L independent of i . 
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Proof. First, we note that in each initial triangle there are only 4 different types 
of geometrically similar triangles at any level of triangulation. They are similar to 
the triangles of F1. Therefore their angles are independent of the level number i. 
Thus (6.2) holds true with 

(6.5) L > L maxJ1a 
A EcY'i 

Now let x E Aj E .F and let c 7 0 on Aj, i.e., the point A does not belong to 
the Aj. We consider all triangles Ak on lower levels that contain this x: 

(6.6) x E Aj C C ci+, C Ai C C to E To 

There are two cases. First, A0 does not contain A. This means that C, > c on A0 
(and in particular on Aj) for some constant c that is independent of j. Moreover, 
we have dA = dAlhj/hl for j = 1,2, . . Both these facts follow from (6.3) for 
this type of triangle. Second, A0 contains A. Then there is an index i such that 

(6.7) A , Ai+1 but A E Ai. 

The notation used in the following is given in Figure 1. The statement (6.7) implies 
that x belongs to the trapezium Ci+ Bi+ BiCi. Therefore the inequality Ix - A > 
bo2-(i?l)P holds true. Hence, we have 

(6.8) b`l2- ('+l) (P-1 ) < Cj x) < daI 

by definition of b. On the one hand, dA%+l can be estimated from above by 

(6.9) dA,+l < dAi = dAo2-'P. 

Taking 

L > L1 = dAohl1bo-72P-1, 

we get 

(6.10) dA.+l/hi+l < Ll,J?-,(x) < LJ?-(x). 

On the other hand, dA%+l can be estimated from below by 

dA,+1 > dA%/2p = 2-(i?l)PdAo. 

Taking 

L1 < L1 = d 1o h-12-P 

we get the inequalities 

(6.11) dA,+,/hi+l > L2 4b-,(x) > L-14b-jx). 

Thus (6.3) is proved at the level i + 1. At the higher levels j > i + 1, we have 

dAj/hj = dA,+,/hi+l 

by construction. Therefore (6.10) and (6.11) give us 

(6.12) L-'4b-,(x) < L- 14?a(x) < dAjlhj < LiCjax) < L4D-,(x) 

for all j when C , 0 on Aj. 
Finally, let I,(x) = 0 at some point x E A. This means that x = A. For 

instance, let x = A E Ai+1 AABi+1Ci+l in Figure 1. By analogy with (6.8), we 
have 

(6.13) b`2-('+1)(P-1) < sup 4) < d? 0 
~~~A?i+,- i, 
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Let us choose 

,L > L3 = dAO/(2hlbE). 

Since 

(6.14) dAi+l = dAo2-('+')P) 

we get 

(6.15) dA,+l/hi+l < L3 sup 4b < L sup 4b 
Ai+, Ai+, 

Then, for L satisfying 

L-1 < L-1 = dlk_7/2hj, 

and taking into consideration (6.13) and (6.14), we have 

(6.16) dA,+,/hi+l > L-1 sup 4b > L sup b-. 
Ai+ A1i+, 

Therefore, (6.2)-(6.4) are proved if L is sufficiently large; more precisely, the choice 

L = max{Lo, ,L4} 

is sufficient to guarantee (6.2)-(6.4). O 

Thus conditions (i)-(iii) of [1] are satisfied and we can use its results. For ex- 
ample, there is a constant C3 independent of hi such that the number ni of interior 
vertices in Fi can be estimated in the following way: 

(6.17) ni < c3hI-2. 

Now we derive the Galerkin approximation based on the triangulation described 
above. We denote by Qi the set of all nodes of the triangulation Fi, and by Qi 
the set of all interior nodes. For each node y E Qi, we define the basis function 

E Ho (Q) by requiring it to be linear on each triangle of the triangulation Ti, to 
equal 1 at the node y and to equal 0 at every other node z E Q%i We denote the 
linear span of these functions by 

XiW= span { p: yE Qi} 

Considering (5.4) on the subspace H-i C Ho' (Q), we get the discrete problem: 
Find ii E WH such that 

(6.18) a (ii, v) =(f , v)z Vv E Xi. 

Let Mi be the ni-dimensional vector space of all vectors w = (w(x) x E Q%). 
Then the formulation (6.18) is equivalent to the linear system of algebraic equa- 

tions 

(6.19) Liui = fi 

where ui E Mi is the vector of unknowns with components ui(y), y E Qi; fi E Mi 
is defined by fi(x) = (f, p-)Q for all x E Qi; Li is the matrix whose elements are 

(6.20) Li (x, y) =a((', (px), Vx, y EQi. 

Let us define the usual isomorphism ji between vectors v E Mi and functions 
v EHW that are their prolongations, i.e., 

(6.21) v iv means v(x) = v(y)pi (x), Vx E 

YCQi 
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and, vice versa, 

(6.22) v 1= 1 , is defined by v(y) = (y), Vy E Qi. 

Now we introduce the energy norm for functions belonging to Hol (Q): 

IIIqIIIQ =,Cp)V)112) 

and specify the inner product and the norm for vectors in Mi: 

(V, w) i= E v (x)w (x), 
XCQi 

IIVIli = (V,V)11/2, EV,W E Mi. 

From (6.20) and (6.21), we have for an isomorphic pair v E Mi and v3 =iv E H 
the relationship 

(6.23) lllvllli= IIIbIIIQ. 

Now let us introduce the interpolation operator 1i: Mi -* Mi+,. Let v E Mi. 
Since its prolongation v belongs to Vi+1, the isomorphism associates with v a vec- 
tor w E Mi+,. In such a way, we have uniquely defined 1i: v -* w. 

The convergence of the Bubnov-Galerkin solution to the exact solution was stud- 
ied in a number of papers (e.g., [3]). A standard analysis on a quasi-uniform trian- 
gulation gives a non-optimal convergence rate because of a loss of regularity in the 
exact solution u. In our case we can however use the special nested triangulations 
that are refined towards the singular point and hence obtain the optimal first-order 
convergence. 

Lemma 6.2. Let the triangulations .Fi at the levels i = 1, , 1 be generated with 
a refinement index 

(6.24) p > V/A 

and let 3 = (p - 1)/p. Suppose that the assumptions (5.3) are satisfied and that 
f E H?'O(Q). Then the solution ui of the Galerkin problem (6.18) satisfies the error 
estimate 

(6.25) II1IU - ii I I IQ <- C4hjII I illo,O 

Proof. Let us note that 13 satisfies 1 - ,u <13 < 1. This means that we can apply 
Theorem 5.1 and prove existence of a solution of the continuous problem in H2' (Q). 
Using Lemma 4.5 from [1], we can estimate the interpolation error by 

(6.26) Ilu -Vij 1|,Q < ch- I|U|I2, 

Here vi denotes the piecewise linear interpolant of u on Fi. Next, applying (5.12) 
and using the equivalence of the norms 111- IIQ and 11 |1 ,Q, we get 

(6.27) IIIu - iII <_ c4h1 f 1o,o. 

Finally, the optimality of the Galerkin solution ui implies that 

u-iiliiQ < II|U-iIIIQ ?< C4hIIfHlo,o. 

In the following we need 
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Lemma 6.3. Under the assumptions of Lemma 6.2, the solutions ii-1, iii of the 
Galerkin problem (6.18) in Xi-1 and 7Hi satisfy the inequalities 

(6.28) li- uiii lo,-,8 < c5hi I Iuii- i-1 I1 IQ) 
(6.29) J1iiii-ill Q < Illu - uill Q. 

Proof. We shall use a duality argument as in [1]. Let z denote the solution of the 
problem 

(6.30) a(z, v) (g, v)Q Vv E Ho' (Q) 

with the right-hand side 

g 2 
(iii- 

We show that g E H0Qd. From [1] we know that there is a constant c such that for 
all v E H1(Q) we have 

IIVI o,X-3 ? cllvll . 

Setting v =iii - ii_1, we get 

(6.31) 1100,0 = 11ui - ?i_i-i1H -3 < 11i - ii-i 11b <oc. 

Let ii-1 be the Galerkin solution of the problem 

(6.32) a(zji-, v) (g, v)Q Vv E Xi-1H 
Applying Lemma 6.2, we obtain 

(6.33) H Z - Zi-1 1IQ < c4hi1i - ii- i- llo,-O- 

From (6.30) and (6.18) we get the representation 

Ii-ii -_1 = a(z - i2j - 

By means of the Cauchy-Bunjakovski inequality we obtain 

llaii - iUifll,13 ? Ch_Z - i i- i lQ IIUi - 'i i1IIIQ 
< c4h~ifllui3- Ui-lllO/3HlUi -Ui-1H||Q, 

which yields (6.28) with C5 = 2c4. 
In order to prove (6.29), we set v i=i - i2_1 in (5.4) and (6.18); this gives 

a(u, ii-i il) aQi, (iii - 

and taking into consideration 

a( Ui-ii- ii1) = 0, 

we obtain the representation 

a(u - ii, iii - i_l) = a(uii - ii uii - ii_). 

Estimating the left-hand side by the Cauchy-Bunjakovski inequality, 

< Hal - tti-Hl}QHL&ji - -llQ 

we finally get (6.29). O 

In order to check the convergence criterion (4.1) in the next section, we need a 
result on the equivalence of norms. 



516 VLADIMIR SHAIDUROV AND LUTZ TOBISKA 

Lemma 6.4. Let v E Mi, v Jiv E WH be an isomorphic pair, let p > 1 be the 
refinement index of the triangulation, and: = (p - 1)/p. Then there are constants 
C7, C8 > 0, which are independent of i, v, and v, such that 

(6.34) C7jjQ0,: 
-- hillvlli <c811v110,43 

Proof. First we consider a triangle Aa1a2a3 E .i that does not contain A = (0, 0). 
Then we have (6.3), which gives 

L-2 ij J v2dxJ< 24D2 dx<L2 2 Jv2dx. 

From (6.2), we have the affine regularity of A and get, analogously to Theorem 
3.13 of [13], 

5 c9-d2(v2(a,) + v2(a2) + v2(a3)) Jv2 dx 
(6.35) 9A 

< c9d(v2 (a) + V2(a2) + V2 (a3)), 

with a constant C9 that is independent of A. Thus 

C1L2 h2(V2 (a,) + V2 (a2) + V2(a3)) < 2 -2 dx 

< c9L2hi2(v2(a,) + v2(a2) + v2(a3)). 

Second, we consider a triangle A E Fi that contains A = (0,0), e.g., AABiCi. 
From the left-hand side of (6.4), we get 

L-l@:(x) < dA/hi Vx E A. 

Therefore we obtain as above the left-hand side of (6.36) for this A. It remains to 
show the second inequality of (6.36). For this we introduce barycentric coordinates 
Al(x), A2(x), A3(X) corresponding to the vertices Bi, Ci, A respectively. Since 
v(A) = 0, we have 

(6.37) v(x) = v(Bi)Al(x) + v(Ci)A2(x) Vx E A. 

Let Ci = (b1,b2). Then 

JAi(x)j x1b2 - x2b1 1/(2 measA) . 

FRom the Cauchy-Bunjakovski inequality, we obtain 

IAi(x)l <?r(x)dA/(2measA) Vx E A. 

The Law of Sines and (6.2) imply that 

2 measA > d 2 sin2 (1/L). 

Consequently we have 

(6.38) IAi (x) ? < r(x)/(dA sin2(1/L)). 

Analogously, we get 

(6.39) 1A2 (X) I < r(x)/(dA sin2(1/L)). 

FRom the second inequality of (6.4), we have 

(6.40) d1/hi < Lsupr3(x) < Ld3, i.e., d<-j < Lhi. 
A 
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Using (6.37)-(6.39), we get 

f v2(x)r-2'(x) dx J r (x)(v(Bi) A(x) + v(Ci)A2(x))2 dx 

? clod-2(lv(Bi) I + Iv(C,) 1)2 J r2-23(x) dx 

(6.41) 
2<V + j j r32 da drd 

? 2c,odA, v (Bi) + 2(i)Jj r 2 dr d ( 

? cioOdj2I-2 (v2 (Bi ) + V2(Ci)) 

? cloOL2h 2 (V2 (Bi) + V2 (Ci)) 

where c1o sin-2(1/L). Now we are able to prove the second inequality of (6.34) 
by summing the left-hand side of (6.36) over all triangles A E .fj: 

C91L -2 h2l1vll2 = c91L 2 h2 v2 (y) < ?j 242 dx = llv . 

Thus we can take c8 = c9 L in (6.34). To prove the first inequality of (6.34), we 
sum the second inequality of (6.36) over all triangles A E .Fi that do not contain 
A and (6.41) over all triangles A E .Fi that do contain A. This gives 

v 
2 2 

V2(x)r 2:(x) dx < c1jkL2h2 E v2(y) = cjjkL2h2 lVI12 

Q ~~~~~~~yCQ% 

where c1l max{c9, cloO} and k is the maximum number of triangles having a 
common vertex. Therefore we can take C7 = cp1l/2k-1/2L-1 in (6.34). 0 

7. THE MAIN CONVERGENCE RESULT 

Now we are ready to apply the abstract convergence result of Theorem 4.1 to 
the boundary value problem. 

Theorem 7.1. Let the assumptions (5.3) and (5.13) on the data be satisfied and 
let the refinement index p of the triangulation be greater than 1/,u. Then for the 
CCG-algorithm with my iterations on each level j for j 1, ,1, we have the 
error estimate 

(7.1) Il - Vlllll = HUI - ViHQ ? C12 E 2? +1 lfflo, 

where fi = J,vl and vi denotes the final approximation of the CCG-algorithm. 

Proof. Let us note that for i = 1, . , 1 we have the usual estimate 

(7.2) ? < A*< C6 

for the largest eigenvalue A* of the matrix Li (see, e.g., [13, Theorem 3.14]). Taking 
into consideration (6.28) and (6.23), we get 

(7.3) 1iii - iii-1ifo,-3 <_ cshi||Hui- i- ui-l|li 

The norm equivalence (6.34) gives 

(7.4) hi - lui-Iijui_jli <? c81iii -ii-1 . 
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Combining these inequalities with (7.2), we obtain 

(7.5) flui - Ii iUl Ili j< c5c8 C6 llui-Ii_iui-illli 

This proves (4.1) for -y = 1 and c*= c5c8VC. Since all the assumptions of Theorem 
4.1 are satisfied, we get 

H||ui - vllli < c E 2m + llliu - kj_lH|Q 

from (3.9) and (6.23). Owing to (6.29) and (6.25), we have (7.1) with C12 = c*c2c4. 
D 

Now we count the number NCCG of arithmetic operations for the full CCG- 
algorithm and try to choose mj in an optimal way. Upper bounds for the arithmetic 
operations have been considered, e.g., in [12], [13], and are given by 

(7.6) NCCG< N(mi,.* , mi) := di (mj + d2)nj + d3 
j=1 

with constants d1, d2 and d3 that are independent of mj, nj and hj. On the 
other hand, the accuracy of the CCG-algorithm is characterized by the value E 

(7.7) Illul < E(m1,- ml) := d4 2 +-I 
J=1 

with the constant d4 = C12iflfflo. This leads us to solve the optimization problem: 

Find mj,--- , ml such that the value E(mi,.. , ml) is minimal under the con- 
straint 

(7.8) N(mj, * *, Tmn) < d5 

for an appropriate constant d5 > 0. 

Applying the method of Lagrange multipliers, we obtain 

(7.9) (2mg + 1)2 = d6hj/nj, for j = 1, ... ,1, 

with a constant d6 that depends on d1, --- , d5 but is independent of mj. We 
eliminate d6 by using (7.9) for j 1, and get 

(7.10) 2m- + 1 (2m, + 1)hjnl/hlny. 

Since hi = 21-jhl and ni 41-ini, we obtain 

(7.11) 2mj + 1 (2ml + 1)23(1-j)/2 

We use this relation in the following way. Fixing the number of iterations at the 
highest level 1 by setting ml = m, we choose mj at the lower levels as the smallest 
integer mj such that 

(7.12) 2mj + 1 > (2ml + 1)23(1-j)/2 for j 1,... , -1. 
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Theorem 7.2. In addition to the assumptions of Theorem 7.1, let the number mj 
of iterations in the CCG-algorithm be defined by (7.12). Then the error of the final 
approximation vl in the CCG-algorithm satisfies the estimates 

(7.13) Hal - - HU - VlH|Q ? C 
hi 

2 fWo I l i v II 1 II ii -i5 II Q 2m + 1 l l 

and 

(7.14) illu -vb jQ < h(c2c4 + 2m + 1)flf o, 

where l = SJlvl and the constants c2 and C4 are given in (5.14) and (6.25). The 
number of arithmetic operations is bounded by 

(7.15) NCCG < (C14nm + C15)ni; 
the constants C13 -C15 are independent of the number of levels, the number of CG- 
iterations on the highest level m, and the number of unknowns on the highest level 
ni . 

Proof. Using (7.12) and the relation hj = 21-jhl in (7.1), we get 

IIztii - VHIIIQ < Cp2z 1 Z2(li)/2Hflo. 

Summing, we get (7.13) with the constant c13 = c12/(- 2- 1/2). FRom the Euler 
formula for a polyhedron, we have 

(7.16) ni> 41-inj. 
The definition of mT implies that 

2mj + ? < (2m + 1)23(1-j)/2 + 2. 

Using these inequalities in (7.6), we obtain the estimate 

NCCG< d1ni Z((2m + 1)23(1-j)/2 -1/2 + d2)2-2(1-j) + d3. 
j=1 

Calculating the sum, we finally get (7.15) with constants 

C14 = 2/(1 - 2-1/2) and c15 = 1/(1 - 2-1/2) + (4d2 - 2)/3 + d3. D 

Remark 7.3. Now choosing m in order to get c2c4 - C13/(2m + 1), we see that the 
amount of arithmetic operations is proportional only to nl. 

Remark 7.4. The inequality (7.14) shows that the final numerical solution produced 
by the CCG-method is, in the energy norm, of the same order of magnitude as the 
discretization error of the finite element method. Nevertheless, this approximate so- 
lution il is not the finite element solution and may not have a higher-order L2 norm 
error nor exhibit superconvergence. In this sense, the CCG-method is not as good 
as multigrid V-cycle iterations or the CG-method with a V-cycle preconditioner 
[13], [14]. 

Remark 7.5. The inequality (7.12) gives an upper bound for the estimated number 
of iterations on each level. For the coarse grids this bound may be too pessimistic 
(i.e., much larger than the number of unknowns). 
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